Um cálculo de previsão Exemplos A.1 Métodos de cálculo da previsão Doze métodos de cálculo de previsões estão disponíveis. A maioria desses métodos fornece controle limitado de usuários. Por exemplo, o peso colocado em dados históricos recentes ou o intervalo de datas dos dados históricos usados nos cálculos pode ser especificado. Os exemplos a seguir mostram o procedimento de cálculo para cada um dos métodos de previsão disponíveis, dado um conjunto idêntico de dados históricos. Os exemplos a seguir usam os mesmos dados de vendas de 2004 e 2005 para produzir uma previsão de vendas de 2006. Além do cálculo da previsão, cada exemplo inclui uma previsão simulada de 2005 para um período de espera de três meses (opção de processamento 19 3), que é então utilizado para porcentagem de precisão e cálculos de desvio absoluto médio (vendas reais em comparação com previsão simulada). A.2 Critérios de avaliação do desempenho da previsão Dependendo da sua seleção de opções de processamento e das tendências e padrões existentes nos dados de vendas, alguns métodos de previsão serão melhores do que outros para um determinado conjunto de dados históricos. Um método de previsão apropriado para um produto pode não ser apropriado para outro produto. Também é improvável que um método de previsão que forneça bons resultados em um estágio do ciclo de vida de um produto permaneça adequado ao longo de todo o ciclo de vida. Você pode escolher entre dois métodos para avaliar o desempenho atual dos métodos de previsão. Estes são Mean Absolute Deviation (MAD) e Percentagem de Precisão (POA). Ambos os métodos de avaliação de desempenho exigem dados de vendas históricos para um período de tempo especificado pelo usuário. Esse período de tempo é chamado de período de espera ou períodos de melhor ajuste (PBF). Os dados neste período são usados como base para recomendar qual dos métodos de previsão a serem utilizados na realização da próxima projeção de previsão. Esta recomendação é específica para cada produto e pode mudar de uma geração de previsão para a próxima. Os dois métodos de avaliação de desempenho de previsão são demonstrados nas páginas seguindo os exemplos dos doze métodos de previsão. A.3 Método 1 - Porcentagem especificada no último ano Este método multiplica os dados de vendas do ano anterior por um fator especificado pelo usuário, por exemplo, 1.10 para um aumento de 10, ou 0,97 para uma diminuição de 3. Histórico de vendas obrigatório: um ano para calcular a previsão mais o número de períodos de tempo especificado pelo usuário para avaliar o desempenho da previsão (opção de processamento 19). A.4.1 Cálculo de Previsão Faixa de histórico de vendas para usar no cálculo do fator de crescimento (opção de processamento 2a) 3 neste exemplo. Soma os três meses finais de 2005: 114 119 137 370 Soma os mesmos três meses do ano anterior: 123 139 133 395 O fator calculado 370395 0.9367 Calcule as previsões: vendas de janeiro de 2005 128 0.9367 119.8036 ou cerca de 120 de fevereiro de 2005 vendas 117 0,9367 109,5939 ou cerca de 110 de março de 2005 vendas 115 0,9367 107,7205 ou cerca de 108 A.4.2 Cálculo de Previsão Simulado Sume os três meses de 2005 antes do período de retenção (julho, agosto, setembro): 129 140 131 400 Soma os mesmos três meses para o Ano anterior: 141 128 118 387 O fator calculado 400387 1.033591731 Calcular previsão simulada: outubro de 2004 vendas 123 1.033591731 127.13178 novembro de 2004 vendas 139 1.033591731 143.66925 dezembro de 2004 vendas 133 1.033591731 137.4677 A.4.3 Porcentagem de cálculo de precisão POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 Cálculo do desvio absoluto médio MAD (127.13178 - 114 143.66925 - 119 137.4677- 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Método 3 - Ano passado para este ano Este método copia dados de vendas do ano anterior para o próximo ano. Histórico de vendas obrigatório: um ano para calcular a previsão, além do número de períodos de tempo especificados para avaliar o desempenho da previsão (opção de processamento 19). A.6.1 Cálculo da Previsão Número de períodos a serem incluídos na média (opção de processamento 4a) 3 neste exemplo Para cada mês da previsão, a média dos dados dos três meses anteriores. Previsão de janeiro: 114 119 137 370, 370 3 123.333 ou previsão de 123 de fevereiro: 119 137 123 379, 379 3 126.333 ou 126 Previsão de março: 137 123 126 379, 386 3 128.667 ou 129 A.6.2 Cálculo de Previsão Simulado vendas de outubro de 2005 (129 140 131) 3 133.3333 Vendas de novembro de 2005 (140 131 114) 3 128.3333 Vendas de dezembro de 2005 (131 114 119) 3 121.3333 A.6.3 Porcentagem de cálculo de precisão POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Absoluto médio Cálculo do desvio MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Método 5 - Aproximação linear Aproximação linear calcula uma tendência com base em dois pontos de dados de histórico de vendas. Esses dois pontos definem uma linha de tendência direta que é projetada para o futuro. Use este método com cautela, pois as previsões de longo alcance são alavancadas por pequenas mudanças em apenas dois pontos de dados. Histórico de vendas obrigatório: o número de períodos a serem incluídos na regressão (opção de processamento 5a), mais 1 mais o número de períodos de tempo para avaliar o desempenho da previsão (opção de processamento 19). A.8.1 Cálculo da Previsão Número de períodos a serem incluídos na regressão (opção de processamento 6a) 3 neste exemplo Para cada mês da previsão, adicione o aumento ou diminuição durante os períodos especificados antes do período de retenção no período anterior. Média dos três meses anteriores (114 119 137) 3 123.3333 Resumo dos três meses anteriores com peso considerado (114 1) (119 2) (137 3) 763 Diferença entre os valores 763 - 123.3333 (1 2 3) 23 Razão ( 12 22 32) - 2 3 14 - 12 2 Valor1 DiferençaRatio 232 11,5 Valor2 Média - valor1 proporção 123.3333 - 11,5 2 100.3333 Previsão (1 n) valor1 valor2 4 11,5 100.3333 146.333 ou 146 Previsão 5 11.5 100.3333 157.8333 ou 158 Previsão 6 11.5 100.3333 169.3333 Ou 169 A.8.2 Cálculo de Previsão Simulado Vendas de outubro de 2004: Média dos três meses anteriores (129 140 131) 3 133.3333 Resumo dos três meses anteriores com peso considerado (129 1) (140 2) (131 3) 802 Diferença entre o Valores 802 - 133.3333 (1 2 3) 2 Razão (12 22 32) - 2 3 14 - 12 2 Valor1 Diferença Rácio 22 1 Valor2 Rácio médio - valor1 133.3333 - 1 2 131.3333 Previsão (1 n) valor1 valor2 4 1 131.3333 135.3333 Novembro 2004 vendas Média dos três meses anteriores (140 131 114) 3 128.3333 Resumo dos três meses anteriores com peso considerado (140 1) (131 2) (114 3) 744 Diferença entre os valores 744 - 128.3333 (1 2 3) -25.9999 Valor1 DiferençaRatio -25.99992 -12.9999 Valor2 Rácio médio - valor1 128.3333 - (-12.9999) 2 154.3333 Previsão 4 -12.9999 154.3333 102.3333 Vendas de dezembro de 2004 Média dos três meses anteriores (131 114 119) 3 121.3333 Resumo dos três meses anteriores com peso considerado ( 131 1) (114 2) (119 3) 716 Diferença entre os valores 716 - 121.3333 (1 2 3) -11.9999 Valor1 DiferençaRatio -11.99992 -5.9999 Valor2 Taxa média - valor1 121.3333 - (-5.9999) 2 133.3333 Previsão 4 (-5.9999 ) 133.3333 109.3333 A.8.3 Porcentagem do Cálculo de Precisão POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Cálculo médio do desvio absoluto MAD (135,33 - 114 102,33 - 119 109,33 - 137) 3 21,88 A.9 Método 7 - Secon D Grau Aproximação A regressão linear determina valores para a e b na fórmula de previsão Y a bX com o objetivo de ajustar uma linha reta aos dados do histórico de vendas. A Aproximação do Segundo Grau é semelhante. No entanto, esse método determina valores para a, b e c na fórmula de previsão Y a bX cX2 com o objetivo de ajustar uma curva aos dados do histórico de vendas. Este método pode ser útil quando um produto está na transição entre os estágios de um ciclo de vida. Por exemplo, quando um novo produto passa da introdução para os estágios de crescimento, a tendência de vendas pode acelerar. Por causa do segundo termo da ordem, a previsão pode rapidamente se aproximar do infinito ou diminuir para zero (dependendo se o coeficiente c é positivo ou negativo). Portanto, esse método é útil apenas no curto prazo. Especificações de previsão: as fórmulas encontram a, b e c para ajustar uma curva a exatamente três pontos. Você especifica n na opção de processamento 7a, o número de períodos de tempo a serem acumulados em cada um dos três pontos. Neste exemplo n 3. Portanto, os dados de vendas reais de abril a junho são combinados no primeiro ponto, Q1. De julho a setembro são adicionados juntos para criar Q2, e outubro a dezembro somam para o terceiro trimestre. A curva será ajustada aos três valores Q1, Q2 e Q3. Histórico de vendas obrigatório: 3 n períodos para calcular a previsão, além do número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). Número de períodos para incluir (opção de processamento 7a) 3 neste exemplo Use os blocos anteriores (3 n) meses em três meses: Q1 (Abr-Jun) 125 122 137 384 Q2 (Jul-Sep) 129 140 131 400 Q3 ( Out - Dec) 114 119 137 370 O próximo passo envolve o cálculo dos três coeficientes a, b e c a serem utilizados na fórmula de previsão Y a bX cX2 (1) Q1 a bX cX2 (onde X 1) abc (2) Q2 Um bX cX2 (onde X 2) a 2b 4c (3) Q3 a bX cX2 (onde X 3) a 3b 9c Resolva as três equações simultaneamente para encontrar b, a e c: Subtrair a equação (1) da equação (2) E resolva para b (2) - (1) Q2 - Q1 b 3c Substitua esta equação por b na equação (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Finalmente, substitua estas equações por a e b em Equação (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) 2 O método de Aproximação do Segundo Grau calcula a, b e c da seguinte maneira: a Q3 - 3 (Q2 - Q1) 370 - 3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) 2 (370 - 400) (384 - 400) 2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23) X2 Janela até a previsão de março (X4): (322 340 - 368) 3 2943 98 Por período de previsão de abril a junho (X5): (322 425-575) 3 57,3333 ou 57 por período de previsão de julho a setembro (X6): (322 510 - 828) 3 1,33 ou 1 por período de outubro a dezembro (X7) (322 595 - 11273 -70 A.9.2 Cálculo de Previsão Simulado Outubro, Novembro e Dezembro de 2004 vendas: Q1 (Jan-Mar) 360 Q2 (Abr-Jun) 384 Q3 (Jul-Sep) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Porcentagem do Cálculo de Precisão POA (136 136 136) (114 119 137) 100 110,27 A.9.4 Cálculo do desvio absoluto médio MAD (136 - 114 136 - 119 136 - 137) 3 13,33 A.10 Método 8 - Método flexível O método flexível (Percentagem sobre n meses prévios) é semelhante ao método 1, Percentagem acima do último ano. Ambos os métodos multiplicam os dados de vendas de um período de tempo anterior por um fator especificado pelo usuário, então, projete esse resultado no futuro. No método Percent Over Over Year, a projeção é baseada em dados do mesmo período do ano anterior. O Método Flexível adiciona a capacidade de especificar um período de tempo diferente do mesmo período do ano passado para usar como base para os cálculos. Fator de multiplicação. Por exemplo, especifique 1.15 na opção de processamento 8b para aumentar os dados anteriores do histórico de vendas em 15. Período base. Por exemplo, n 3 fará com que a primeira previsão baseie-se em dados de vendas em outubro de 2005. Histórico de vendas mínimo: o usuário especificou o número de períodos de volta ao período base, além do número de períodos de tempo necessários para avaliar o desempenho previsto ( PBF). A.10.4 Cálculo médio do desvio absoluto MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Método 9 - Média móvel ponderada O método da média móvel ponderada (WMA) é semelhante ao Método 4, Média móvel (MA). No entanto, com a média móvel ponderada, você pode atribuir pesos desiguais aos dados históricos. O método calcula uma média ponderada do histórico recente de vendas para chegar a uma projeção para o curto prazo. Os dados mais recentes geralmente são atribuídos a um peso maior do que os dados mais antigos, portanto, isso torna a WMA mais sensível às mudanças no nível de vendas. Contudo, o preconceito de previsão e os erros sistemáticos ainda ocorrem quando o histórico de vendas do produto exibe uma forte tendência ou padrões sazonais. Este método funciona melhor para previsões de curto alcance de produtos maduros, em vez de produtos nos estágios de crescimento ou obsolescência do ciclo de vida. N o número de períodos de histórico de vendas a serem usados no cálculo da previsão. Por exemplo, especifique n 3 na opção de processamento 9a para usar os três períodos mais recentes como base para a projeção no próximo período de tempo. Um grande valor para n (como 12) requer mais histórico de vendas. Isso resulta em uma previsão estável, mas será lento para reconhecer mudanças no nível de vendas. Por outro lado, um pequeno valor para n (como 3) responderá mais rápido a mudanças no nível de vendas, mas a previsão pode flutuar tão amplamente que a produção não pode responder às variações. O peso atribuído a cada um dos períodos de dados históricos. Os pesos atribuídos devem totalizar para 1,00. Por exemplo, quando n 3, atribua pesos de 0,6, 0,3 e 0,1, com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo exigido: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13,5 A.12 Método 10 - Suavização linear Este método é semelhante ao Método 9, Média de Movimento Ponderada (WMA). No entanto, em vez de atribuir arbitrariamente pesos aos dados históricos, uma fórmula é usada para atribuir pesos que diminuem linearmente e somam para 1,00. O método então calcula uma média ponderada do histórico de vendas recente para chegar a uma projeção para o curto prazo. Como é verdade para todas as técnicas de previsão média móvel média, tendência de previsão e erros sistemáticos ocorrem quando o histórico de vendas do produto exibe uma forte tendência ou padrões sazonais. Este método funciona melhor para previsões de curto alcance de produtos maduros, em vez de produtos nos estágios de crescimento ou obsolescência do ciclo de vida. N o número de períodos de histórico de vendas a serem usados no cálculo da previsão. Isso é especificado na opção de processamento 10a. Por exemplo, especifique n 3 na opção de processamento 10b para usar os três períodos mais recentes como base para a projeção no próximo período de tempo. O sistema atribuirá automaticamente os pesos aos dados históricos que recuam linearmente e somam para 1,00. Por exemplo, quando n 3, o sistema atribuirá pesos de 0,5, 0,3333 e 0,1, com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo exigido: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). A.12.1 Cálculo da Previsão Número de períodos a serem incluídos na média de suavização (opção de processamento 10a) 3 neste exemplo Relação para um período anterior 3 (n2 n) 2 3 (32 3) 2 36 0.5 Relação para dois períodos anteriores 2 (n2 n ) 2 2 (32 3) 2 26 0.3333 .. Relação para três períodos anteriores 1 (n2 n) 2 1 (32 3) 2 16 0.1666 .. Previsão de janeiro: 137 0.5 119 13 114 16 127.16 ou 127 Previsão de fevereiro: 127 0.5 137 13 119 16 129 Previsão de março: 129 0,5 127 13 137 16 129,666 ou 130 A.12.2 Cálculo de Previsão Simulado outubro de 2004 vendas 129 16 140 26 131 36 133.6666 novembro 2004 vendas 140 16 131 26 114 36 124 dezembro 2004 vendas 131 16 114 26 119 36 119.3333 A.12.3 Porcentagem do Cálculo de Precisão POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Cálculo do Desvio Absorvente Médio MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Método 11 - Suavização exponencial Este método é semelhante ao Método 10, Suavização linear. No Suavização linear, o sistema atribui pesos aos dados históricos que recuam linearmente. Em suavização exponencial, o sistema atribui pesos que se deterioram exponencialmente. A equação de previsão de suavização exponencial é: Previsão a (Vendas reais anteriores) (1 - a) Previsão anterior A previsão é uma média ponderada das vendas reais do período anterior e da previsão do período anterior. A é o peso aplicado às vendas reais para o período anterior. (1 - a) é o peso aplicado à previsão do período anterior. Valores válidos para um intervalo de 0 a 1, e geralmente caem entre 0,1 e 0,4. A soma dos pesos é 1,00. A (1 - a) 1 Você deve atribuir um valor para a constante de suavização, a. Se você não atribuir valores para a constante de suavização, o sistema calcula um valor assumido com base no número de períodos de histórico de vendas especificado na opção de processamento 11a. A constante de suavização utilizada no cálculo da média suavizada para o nível geral ou a magnitude das vendas. Valores válidos para um intervalo de 0 a 1. n o intervalo de dados do histórico de vendas para incluir nos cálculos. Geralmente, um ano de dados de histórico de vendas é suficiente para estimar o nível geral de vendas. Para este exemplo, foi escolhido um pequeno valor para n (n 3) para reduzir os cálculos manuais necessários para verificar os resultados. O suavização exponencial pode gerar uma previsão baseada em um ponto de dados histórico tão pouco quanto possível. Histórico de vendas mínimo exigido: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). A.13.1 Cálculo de Previsão Número de períodos a serem incluídos na média de suavização (opção de processamento 11a) 3 e fator alfa (opção de processamento 11b) em branco neste exemplo, um fator para os dados de vendas mais antigos 2 (11) ou 1 quando especificado em alfa Um fator para os 2º dados de vendas mais antigos 2 (12), ou alfa quando o alfa é especificado como um fator para os 3º dados de vendas mais antigos 2 (13), ou alfa quando o alfa é especificado como um fator para os dados de vendas mais recentes 2 (1n) , Ou alfa quando o alfa é especificado em novembro Sm. Avg. A (outubro atual) (1 - a) outubro Sm. Avg. 1 114 0 0 114 Dezembro Sm. Avg. A (Novembro Actual) (1 - a) Novembro Sm. Avg. 23 119 13 114 117.3333 Previsão de janeiro a (dezembro atual) (1 - a) dezembro Sm. Avg. 24 137 24 117.3333 127.16665 ou 127 Fevereiro Previsão Previsão de janeiro 127 Março Previsão Previsão de janeiro 127 A.13.2 Cálculo de previsão simulada Julho, 2004 Sm. Avg. 22 129 129 agosto Sm. Avg. 23 140 13 129 136.3333 setembro Sm. Avg. 24 131 24 136.3333 133.6666 outubro, 2004 vendas Sep Sm. Avg. 133.6666 Agosto, 2004 Sm. Avg. 22 140 140 setembro Sm. Avg. 23 131 13 140 134 outubro Sm. Avg. 24 114 24 134 124 novembro, 2004 vendas Sep Sm. Avg. 124 setembro 2004 Sm. Avg. 22 131 131 outubro Sm. Avg. 23 114 13 131 119.6666 novembro Sm. Avg. 24 119 24 119.6666 119.3333 dezembro 2004 vendas Sep Sm. Avg. 119.3333 A.13.3 Porcentagem do Cálculo de Precisão POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Cálculo do Desvio Absorvente Médio MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Método 12 - Suavização Exponencial Com Tendência e Sazonalidade Este método é semelhante ao Método 11, Suavização Exponencial em que uma média suavizada é calculada. No entanto, o Método 12 também inclui um termo na equação de previsão para calcular uma tendência suavizada. A previsão é composta por uma média lisa ajustada para uma tendência linear. Quando especificado na opção de processamento, a previsão também é ajustada para a sazonalidade. A constante de suavização utilizada no cálculo da média suavizada para o nível geral ou a magnitude das vendas. Valores válidos para o intervalo alfa de 0 a 1. b a constante de suavização utilizada no cálculo da média suavizada para o componente de tendência da previsão. Valores válidos para o intervalo beta de 0 a 1. Se um índice sazonal é aplicado à previsão a e b são independentes um do outro. Eles não precisam adicionar a 1.0. Histórico de vendas mínimo exigido: dois anos mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). O método 12 usa duas equações de alisamento exponencial e uma média simples para calcular uma média suavizada, uma tendência suavizada e um fator sazonal médio simples. A.14.1 Cálculo da previsão A) Uma média MAD suavemente exponencial (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 Avaliando as previsões Você pode selecionar os métodos de previsão para gerar até doze previsões para cada produto. Cada método de previsão provavelmente criará uma projeção ligeiramente diferente. Quando milhares de produtos são previstos, não é prático tomar uma decisão subjetiva sobre qual das previsões usar em seus planos para cada um dos produtos. O sistema avalia automaticamente o desempenho para cada um dos métodos de previsão que você seleciona e para cada um dos produtos previstos. Você pode escolher entre dois critérios de desempenho, desvio médio absoluto (MAD) e porcentagem de precisão (POA). MAD é uma medida de erro de previsão. O POA é uma medida do viés de previsão. Ambas as técnicas de avaliação de desempenho exigem dados reais do histórico de vendas para um período de tempo especificado pelo usuário. Este período de história recente é chamado de período de espera ou períodos de melhor ajuste (PBF). Para medir o desempenho de um método de previsão, use as fórmulas de previsão para simular uma previsão para o período histórico de retenção. Normalmente, haverá diferenças entre os dados reais de vendas e a previsão simulada para o período de retenção. Quando vários métodos de previsão são selecionados, esse mesmo processo ocorre para cada método. Várias previsões são calculadas para o período de espera e comparadas com o histórico de vendas conhecido para esse mesmo período de tempo. O método de previsão que produz a melhor combinação (melhor ajuste) entre a previsão e as vendas reais durante o período de suspensão é recomendado para uso em seus planos. Esta recomendação é específica para cada produto e pode mudar de uma geração de previsão para a próxima. A.16 Desvio absoluto médio (MAD) MAD é a média (ou média) dos valores absolutos (ou magnitude) dos desvios (ou erros) entre dados reais e previsão. MAD é uma medida da magnitude média dos erros a esperar, dado um método de previsão e histórico de dados. Como os valores absolutos são usados no cálculo, erros positivos não cancelam erros negativos. Ao comparar vários métodos de previsão, aquele com menor MAD mostrou ser o mais confiável para esse produto para esse período de espera. Quando a previsão é imparcial e os erros são normalmente distribuídos, existe uma relação matemática simples entre MAD e outras duas medidas comuns de distribuição, desvio padrão e Erro quadrático médio: A.16.1 Porcentagem de Precisão (POA) Porcentagem de Precisão (POA) é Uma medida de previsão de viés. Quando as previsões são consistentemente muito altas, os estoques se acumulam e os custos dos estoques aumentam. Quando as previsões são consistentemente duas baixas, os estoques são consumidos e o serviço ao cliente diminui. Uma previsão que é 10 unidades muito baixa, então 8 unidades muito altas, então 2 unidades muito altas, seria uma previsão imparcial. O erro positivo de 10 é cancelado por erros negativos de 8 e 2. Erro Actual - Previsão Quando um produto pode ser armazenado no inventário e quando a previsão é imparcial, uma pequena quantidade de estoque de segurança pode ser usada para amortecer os erros. Nessa situação, não é tão importante eliminar erros de previsão, pois é gerar previsões imparciais. No entanto, nas indústrias de serviços, a situação acima seria vista como três erros. O serviço ficaria insuficiente no primeiro período, e depois o excesso de pessoal para os próximos dois períodos. Nos serviços, a magnitude dos erros de previsão geralmente é mais importante do que o previsão de viés. O somatório durante o período de suspensão permite erros positivos para cancelar erros negativos. Quando o total de vendas reais excede o total de vendas previstas, a proporção é superior a 100. É claro que é impossível ter mais de 100 precisões. Quando uma previsão é imparcial, a proporção de POA será de 100. Portanto, é mais desejável ter 95 precisos do que ser 110 precisos. Os critérios POA selecionam o método de previsão que tem uma razão POA mais próxima de 100. O script nesta página melhora a navegação do conteúdo, mas não altera o conteúdo de forma alguma. O.-Notas são uma série de notas introdutórias sobre temas que se enquadram na ampla Título do campo de pesquisa operacional (OR). Eles foram usados originalmente por mim em um curso OR introdutório que eu dou no Imperial College. Eles estão agora disponíveis para uso por qualquer estudante e professor interessado em OU, sujeito às seguintes condições. Uma lista completa dos tópicos disponíveis no OR-Notes pode ser encontrada aqui. Exemplos de previsão Exemplo de previsão 1996 exame UG A demanda por um produto em cada um dos últimos cinco meses é mostrada abaixo. Use uma média móvel de dois meses para gerar uma previsão de demanda no mês 6. Aplique suavização exponencial com uma constante de suavização de 0,9 para gerar uma previsão de demanda por demanda no mês 6. Qual dessas duas previsões você prefere e por que o movimento de dois meses A média dos meses de dois a cinco é dada por: A previsão para o mês seis é apenas a média móvel do mês anterior, ou seja, a média móvel para o mês 5 m 5 2350. Aplicando suavização exponencial com uma constante de suavização de 0,9, obtemos: como antes A previsão para o mês seis é apenas a média para o mês 5 M 5 2386 Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel de MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16.67 e para a média exponencialmente suavizada com uma constante de suavização de 0,9 MSD (13 - 17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Em geral, verificamos que o alisamento exponencial parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Por isso, preferimos a previsão de 2386 que foi produzida por suavização exponencial. Exemplo de previsão Exercício de 1994 UG A tabela abaixo mostra a demanda por um novo pós-afluxo em uma loja para cada um dos últimos 7 meses. Calcule uma média móvel de dois meses para os meses dois a sete. Qual seria a sua previsão para a demanda no mês oito Aplicar o alisamento exponencial com uma constante de suavização de 0,1 para obter uma previsão da demanda no mês oito. Quais das duas previsões para o mês oito você prefere e por que o dono da loja acredita que os clientes estão mudando para este novo aftershave de outras marcas. Discuta como você pode modelar esse comportamento de comutação e indicar os dados que você precisaria para confirmar se essa mudança está ocorrendo ou não. A média móvel de dois meses para os meses dois a sete é dada por: A previsão para o mês oito é apenas a média móvel do mês anterior, ou seja, a média móvel para o mês 7 m 7 46. Aplicando alisamento exponencial com uma constante de suavização de 0,1 nós Obter: como antes, a previsão para o mês oito é apenas a média do mês 7 M 7 31.11 31 (como não podemos ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,1. Em geral, vemos que a média móvel de dois meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Portanto, preferimos a previsão de 46 que foi produzida pela média móvel de dois meses. Para examinar a mudança, precisamos usar um modelo de processo Markov, onde as marcas dos estados e nós precisamos de informações de estado inicial e probabilidades de troca de clientes (de pesquisas). Nós precisamos executar o modelo em dados históricos para ver se temos um ajuste entre o modelo eo comportamento histórico. Exemplo de previsão 1992 exame UG A tabela abaixo mostra a demanda por uma determinada marca de navalha em uma loja para cada um dos últimos nove meses. Calcule uma média móvel de três meses nos meses três a nove. Qual seria a sua previsão para a demanda no mês dez Aplicar o alisamento exponencial com uma constante de suavização de 0,3 para obter uma previsão da demanda no mês dez. Qual das duas previsões para o mês dez você prefere e por que a média móvel de três meses para os meses 3 a 9 é dada por: A previsão para o mês 10 é apenas a média móvel do mês anterior, ou seja, a média móvel do mês 9 m 9 20.33. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 10 é de 20. Aplicando suavização exponencial com uma constante de suavização de 0,3, obtemos: como antes, a previsão para o mês 10 é apenas a média para o mês 9 M 9 18,57 19 (como nós Não pode ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,3. Em geral, verificamos que a média móvel de três meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Portanto, preferimos a previsão de 20 que foi produzida pela média móvel de três meses. Exemplo de previsão exame 1991 UG A tabela abaixo mostra a demanda por uma determinada marca de máquina de fax em uma loja de departamento em cada um dos últimos doze meses. Calcule a média móvel de quatro meses para os meses 4 a 12. Qual seria a sua previsão para a demanda no mês 13 Aplicar o alisamento exponencial com uma constante de suavização de 0,2 para obter uma previsão da demanda no mês 13. Qual das duas previsões para o mês 13 você prefere e por que outros fatores, não considerados nos cálculos acima, podem influenciar a demanda pelo aparelho de fax no mês 13. A média móvel de quatro meses para os meses 4 a 12 é dada por: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35.75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 A previsão para o mês 13 é apenas a média móvel do mês anterior, ou seja, a média móvel Para o mês 12 m 12 46,25. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 13 é 46. Aplicando suavização exponencial com uma constante de suavização de 0,2 nós obtemos: Como antes, a previsão para o mês 13 é apenas a média para o mês 12 M 12 38.618 39 (como nós Não pode ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,2. No geral, verificamos que a média móvel de quatro meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Por isso, preferimos a previsão de 46 que foi produzida pela média móvel de quatro meses. Demonstração sazonal da demanda, mudanças de preços, tanto esta marca como outras marcas, situação econômica geral, nova tecnologia. Exemplo de previsão, exame 1989 UG. A tabela abaixo mostra a demanda por uma determinada marca de forno de microondas em uma loja de departamento em cada um dos últimos doze meses. Calcule uma média móvel de seis meses para cada mês. Qual seria a sua previsão para a demanda no mês 13 Aplicar o alisamento exponencial com uma constante de suavização de 0,7 para obter uma previsão da demanda no mês 13. Qual das duas previsões para o mês 13 você prefere e por que agora não podemos calcular um seis Média móvel do mês até que tenhamos pelo menos 6 observações - ou seja, só podemos calcular essa média a partir do mês 6 em diante. Por isso, temos: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 A previsão para o mês 13 é apenas a média móvel para o Mês antes, ou seja, a média móvel para o mês 12 m 12 38,17. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 13 é de 38. Aplicando suavização exponencial com uma constante de suavização de 0,7: média móvel média de dados de séries temporais (observações igualmente espaçadas no tempo) de vários períodos consecutivos. Chamado de movimento porque é continuamente recalculado à medida que novos dados se tornam disponíveis, ele progride soltando o valor mais antigo e adicionando o valor mais recente. Por exemplo, a média móvel das vendas de seis meses pode ser calculada tomando a média das vendas de janeiro a junho, depois a média das vendas de fevereiro a julho, de março a agosto, e assim por diante. As médias móveis (1) reduzem o efeito das variações temporárias nos dados, (2) melhoram o ajuste dos dados para uma linha (um processo chamado alisamento) para mostrar a tendência dos dados mais claramente e (3) realçar qualquer valor acima ou abaixo do tendência. Se você está calculando algo com variância muito alta, o melhor que você pode fazer é descobrir a média móvel. Eu queria saber qual era a média móvel dos dados, então eu teria uma melhor compreensão de como estávamos fazendo. Quando você está tentando descobrir alguns números que mudam frequentemente, o melhor que você pode fazer é calcular a média móvel. Modelos Box Jenkins (B-J)
No comments:
Post a Comment